A team from Empa and SSPC’s Modelling theme at the University of Limerick was able to show how the protein takes on an unusual shape when exposed to large amounts of copper ions. The findings could help develop new strategies for the treatment of neurodegenerative diseases.
The causes of Parkinson’s disease are not yet fully understood. Long before the onset of the typical muscle tremor, the appearance of defective proteins in the brain could be a first sign. Researchers have now taken a closer look at the abnormal shape of these alpha-synucleins in the form of protein rings.
The researchers have now taken a closer look at the abnormal shape of these alpha-synucleins in the form of protein rings. In doing so, they were also able to visualize at the nanoscale the connection with environmental pollution by copper. This sheds new light on the development of the neurodegenerative disease and the role of biometals in the disease process. In addition, the findings could provide opportunities to improve early detection and therapy of the disease.
The team led by Empa researcher Peter Nirmalraj from the Transport at Nanoscale Interfaces lab is investigating this hypothesis using imaging techniques and chemical spectroscopy as well as, in collaboration with the team of SSPC Director Prof. Damien Thompson at the University of Limerick, computer simulations. The researchers are targeting a protein that is involved in several molecular processes in the development of Parkinson’s: alpha-synuclein. In affected individuals, this endogenous protein clumps together and causes nerve cells to die. The researchers suspect that copper in high concentrations interferes with these processes and accelerates the disease process.
The team led by Empa researcher Peter Nirmalraj from the Transport at Nanoscale Interfaces lab is investigating this hypothesis using imaging techniques and chemical spectroscopy as well as, in collaboration with the team of Damien Thompson at the University of Limerick, computer simulations. The researchers are targeting a protein that is involved in several molecular processes in the development of Parkinson’s: alpha-synuclein. In affected individuals, this endogenous protein clumps together and causes nerve cells to die. The researchers suspect that copper in high concentrations interferes with these processes and accelerates the disease process.
More information and source: https://www.empa.ch/web/s604/parkinson-diagnostik